
Technical Report:

Effective Quality of Lighthouse’s

Greedy Approach to Attestation Packing

Satalia & Sigma Prime

November 24, 2022

Abstract

We experimentally assess the quality of the approach for solving the
Attestation Aggregation and Packing Problem (AAPP, [3]) implemented
in Sigma Prime’s Lighthouse client. Lighthouse’s approach is composed
of two greedy stages (aggregation and packing) executed in sequence. The
latter is based on an approximation algorithm for the weighted maximum
coverage problem, and is guaranteed to find solutions non-worse than
1 − 1/e ≈ 0.632 of the optimum. However, while the theoretical results
provide a lower bound on the packing quality, they give no indication of
the algorithm’s behaviour when applied to typical instances of the AAPP.
Moreover, there is no theoretical result on the performance of the first
stage (aggregation).

In order to shed some light on the algorithm’s expected behaviour in
the typical case, we take advantage of the exact MIP approach outlined
in [4] and carry out an experimental analysis on eight days-worth of in-
stances extracted by Sigma Prime from Ethereum’s Beacon chain. The
MIP approach is guaranteed to find the optimal aggregation and packing,
and we can therefore benchmark Lighthouse’s approach against it.

Contents

1 Introduction 2

2 Experimental setup 2
2.1 Instances . 2
2.2 Approach . 3

3 Results 3
3.1 Optimality gap . 4
3.2 Solver performance . 4
3.3 Aggregating is fast, packing is slow 5

1

3.4 Lighthouse’s approach: practice vs. theory 5
3.5 Performance of the MIP solver 6
3.6 Predicting metrics of interest . 6

4 Future work 7
4.1 Decomposition approach . 7
4.2 Replacing the MIP approach . 8
4.3 Pruning candidate attestations 8
4.4 Other heuristic approaches . 9

1 Introduction

In this report we outline the experimental analysis that we carried out to as-
sess the typical quality obtained by Lighthouse’s greedy approach for solving
the AAPP. The cornerstone of this analysis is the exact approach described in
[4] to find optimal solutions to the AAPP, which the greedy approach can be
benchmarked against.

The report is organised as follows. Section 2 outlines the experimental setup.
Section 3 provides a summary of the raw results, in particular with respect to
the key aspects of interest: quality and run time, and some discussion of them.
Finally, Section 4 outlines some possible directions for this work, to be picked
up in Phase 2.

2 Experimental setup

This section aims at providing a detailed description of how the experiments
were carried out. We will cover both the instances and the approach.

2.1 Instances

We have used ≈ 8 days worth of instances, each one corresponding to one slot
(i.e., one block proposal) of Ethereum’s Beacon chain. Table 1 illustrates some
of the variability that can be observed throughout the instances. We see that
most instances have a number of attesters around the 12000 mark, and a number
of unique attestation data in the [200, 400] range.

Percentiles 0% 25% 50% 75% 100%
Attesters 3461 11729 11859 12077 73999
Unique attestation data 83 205 277 372 1441

Table 1: Basic statistics on the instances used in this analysis.

Each instance comes with the corresponding greedy solution as computed
by Lighthouse, however the total reward was recalculated by us.

2

Note. The instances reflect the relatively quiet state of the Beacon blockchain,
which is not used for real transactions at the time of this writing (pre-Merge).
One could expect numbers to increase as the chain gains more adoption.

2.2 Approach

We have identified an optimum for each instance by using the MIP approach
described in [4]. Although the approach is discussed at length in a separate
report, here are the main steps.

1. Compute the set of candidate attestations. This is the union of
the candidate attestations for each unique attestation data. These are
obtained as follows

(a) enumerate all the attestations corresponding to maximal cliques for
the graph where the vertices represent aggregated attestations, and
the edges encode the disjointedness of their attester sets (this is car-
ried out using the variant of the Bron-Kerbosch approach described
in [4]) with the various mentioned optimisations,

(b) extend the above with all the compatible unaggregated attestations,

(c) add to the above a further aggregated attestation made up of all
unaggregated attestations.

2. Solve a maximum weighted coverage problem. This is a problem
with maximum capacity 128, and where each set corresponds to one of the
above candidate attestations, and each element corresponds to an attester
with a weight identical to its inclusion reward. We solve this problem
using the MIP model outlined in [4].

All of the code to carry out the above steps is developed in Rust, to keep consis-
tency with the Lighthouse codebase, and to facilitate any further development
to be carried out in Phase 2. While performance wasn’t a key issue for Phase
1 (beyond the practical implication of running the approach for a large number
of instances), we have taken steps to avoid any unnecessary computation.

We have used the good lp1 crate for modelling and solving the weighted
maximum coverage MIP model. good lp provides a convenient modelling layer
and bindings for many available MIP solvers (more on this later), and for these
experiments we used the CBC solver [1] due to its widespread availability.

3 Results

With this experiment, we wanted to answer two main questions:

• How large is the gap between greedy and optimal solutions?

• How well does the MIP solver perform, compared to production require-
ments?

1See good lp.

3

https://crates.io/crates/good_lp

3.1 Optimality gap

Experimental results show that it exists, but, outside of certain outliers, the
relative gap is very small. To illustrate the distribution of the relative gap, we
provide a table of relative gap thresholds and how often they’re exceeded.

Threshold % of instances where gap > threshold
0% 47.68%
1% 0.14%
5% 0.03%

This shows that roughly 52% of the time the greedy solution was already
optimal, and that in only 14 of the 51 097 instances was the gap greater than
5%.

Ultimately, the average relative gap was 0.2%, or, in absolute terms, 261 836
297 Gwei over the data collection period.

3.2 Solver performance

While the current solver isn’t fit for production (as it was designed for offline
use in the context of this experimental evaluation), its performance provides
an indication of the computational effort required by MIP to identify optimal
solutions. Results show that, for the majority of cases, the MIP approach
achieves reasonable performance, albeit being slightly too slow for a production
environment. This may be also down to the choice of the MIP solver back-
end, which is a free and open-source solver. Commercial solvers tend to exhibit
better performance.

Figure 1: A density plot of solver run times.

And, to illustrate the outlier run times, a table of run time thresholds and
how often they’re exceeded.

4

Threshold % of instances where run time > threshold
1000 ms 1.41%
2000 ms 0.14%
3000 ms 0.04%
4000 ms 0.03%
5000 ms 0.02%
6000 ms 0.00%

While performance is good most of the time, it can slow down to unaccept-
able speeds every once in a while. This leads us to believe that it’s possible to
find an optimality-reaching solution that achieves good performance.

The answers to both of our questions should be caveated with the fact that
this is based on current data, on current chain activity. As time goes on, the
activity on the chain, and thus these results, could change. However, these
results still let us make a few observations.

3.3 Aggregating is fast, packing is slow

The approach we use for identifying the candidate attestations to include in a
block is very fast (usually ≈ 15ms or around 3−4% of the total run time). The
rest (≈ 96− 97%) of the time is spent solving the MIP model for the weighted
maximum coverage problem. This figure is at least partially explained by the
choice of the MIP solver. For reference, the average run time of CBC on a
standard set of MIP problems is more than 8 times larger than Gurobi’s [2] (the
leading commercial MIP solver). Having said that, using a commercial solver
will require users to own a license, and that may not be desirable.

On the other hand, the fact that optimality-preserving candidate attestations
can be computed efficiently suggests a possible improvement of Lighthouse’s
current heuristic, which is online and greedy and has no theoretical guarantees.

3.4 Lighthouse’s approach: practice vs. theory

From the results presented in the previous section, it is clear that the greedy
approach finds the optimum quite often (at least on this particular data set)
and, when it doesn’t, it doesn’t typically get very far from it. There are a few
pathological cases where the gap is much larger (e.g., ≈ 40% off the optimum)
but these are not common, and at this stage we cannot assess if it is due to
Lighthouse’s greedy aggregation stage, or its greedy packing stage.

At any rate, when factoring in both solution quality and run time, the ap-
proach seems to strike a reasonable balance that yields profitable proposals most
of the time.

Qualifying the (financial) loss in profit for the cases where Lighthouse’s ap-
proach doesn’t reach the optimum is beyond the scope of this experimental
evaluation. However, from an optimisation perspective, it may make sense to
investigate methods that are either exact and sufficiently fast or that, while not
being exact, can deliver better performance than the current approach more
frequently.

5

3.5 Performance of the MIP solver

While we were not aiming for real-time performance in this project, we were
positively surprised by the performance of the MIP approach, which allowed to
find optimal solutions for the packing part of the problem in less than 0.5s more
than 93% of the time.

We have some intuition around this. Here are what we think may be the
main contributors.

• Scale. The number of decision variables (i.e., the ones modelling whether
a given attestation is added to the block or not) is rather low, often within
a few thousands. This is only possible because the job of restricting the
search space to the cliques that are maximal with respect to attester cov-
erage has been dealt with at the previous step.

• Additive contribution. Each distinct attestation data comes with a
handful of aggregated attestations which overlap in terms of attester cov-
erage, i.e., including one of them in the solution affects the contribution
of including the others. This is not the case for attestations with different
attestation data, which are the majority. For these, the contribution is
additive, and choosing one doesn’t affect the value of choosing another.
Depending on its implementation, a solver may be able to use this infor-
mation to obtain efficient bounds on the maximum reward that can be
achieved when extending a solution with an attestation. Calculating tight
bounds is one of the key strategies MIP solvers use to avoid searching
non-promising parts of the search space.

Even if the performance of the MIP approach is better than we expected, there
are two main challenges to its inclusion in Lighthouse.

1. The performance may not be enough for the real-time scenario, where it
matters how quickly a validator can propose a new block. In particular,
the run time of the MIP approach varies quite wildly from ≈ 200ms to
more than 6s.

2. The MIP solver would represent a dependency, which would have to be
audited properly in order to be trusted2, in this sense it may be better to
use an approach that can be fully included in Lighthouse’s codebase and
audited accordingly.

In Section 4 we discuss some possible alternatives to the MIP approach.

3.6 Predicting metrics of interest

We have tracked some of the performance indicators of interest, namely

2Note that, while the first point could be mitigated with the decomposition method that
we proposed in [4], if said method relies on the MIP approach, a MIP solver would still be a
dependency.

6

• time taken by the MIP to find an optimal solution,

• optimality gap of the greedy solution, i.e., the relative difference in quality
between the quality of the greedy solution and the quality of the optimal
solution,

and explored their relationship with measurable features (both of the instance
and of the output of the aggregation phase).

MIP run time. It appears that there is a relatively strong linear correlation
between the number of attesters, the number of unique attestation data, and the
performance of the MIP solver. A simple linear model can predict the time taken
by the MIP solver to find a solution with a reasonable accuracy (R2 ≈ 0.84).
Let a be the number of attesters in the instance, and d the number of unique
attestation data, then the expected time (in milliseconds) p to solve the MIP
model is

p = −597.85 + a× 0.085 + d×−0.093. (1)

This is something that can be used to estimate, for instance, how this particular
MIP approach would scale as the size of the instances change. We imagine that
both a and d would increase as the Beacon blockchain is adopted, which would
drive up the expected run time of the MIP approach.

Optimality gap. Unfortunately, we haven’t found any clear correlation be-
tween measurable features and the optimality gap. It would be interesting to
understand what makes a problem hard to solve for the greedy approach, but
at this stage there isn’t a clear feature explaining this metric.

4 Future work

We have outlined a few areas for future research, specifically around designing
algorithms that can be used in production and that would perform better than
the current heuristics. Broadly speaking, these approaches are somewhat in-
between the exact MIP approach and the greedy approach implemented by
Lighthouse (see blue area in Figure 2). The rest of this section will outline some
more specific directions.

4.1 Decomposition approach

Due to the fact that the MIP approach was fit for purpose for this experimental
evaluation, we didn’t implement the decomposition approach outlined in [4]. It
is our belief that the decomposition approach would perform significantly better
than the MIP approach. Our belief is based on the following observations

1. solving the weighted maximum coverage problem represents the highest
time spender in the MIP approach,

7

Figure 2: Spaces of approaches to be explored.

2. the weighted maximum coverage problem is NP-hard, therefore solving
large problem is much harder than solving small problems, and

3. the decomposition approach involves solving much smaller weighted max-
imum coverage problems.

We therefore believe that this is a meaningful line of research.

4.2 Replacing the MIP approach

So far we have solved the weighted maximum coverage problem using a MIP
solver. Because of the limitations outlined previously around using a MIP within
Lighthouse, we have considered some options to replace the MIP.

The one that currently seems most promising, but only applicable in the
context of a decomposition approach, is a custom-built branch & bound tree
search. There are several bounds that we can use to speed-up this type of
search, and the added complexity to the Lighthouse codebase would be limited.
Moreover, it wouldn’t require any additional library, removing the uncomfort-
able dependency on third-party IP. We have outlined such a procedure in our
previous report.

4.3 Pruning candidate attestations

There are some strategies that can be used to further reduce the size of the
weighted maximum coverage problems to be solved, e.g., pruning attestations
that are dominated by others with respect to attester coverage. These strategies
require additional computations, and we cannot exclude that the additional
computation could outweigh the advantage of dealing with a smaller problem,
therefore an appropriate trade-off between pre-processing and solving must be
identified (possibly experimentally).

8

4.4 Other heuristic approaches

Exact approaches are not the only possibility when it comes to algorithms that
would be fit for production. Depending on the definition of good, we may want
to consider heuristics that don’t guarantee optimality, but that perform better
than the current approach. These could even combine some of the components
already outlined in the previous report. Some examples are

1. greedy approach → local search,

2. maximal clique enumeration → greedy approach,

3. maximal clique enumeration → greedy approach → local search,

4. maximal clique enumeration → branch & bound.

These approaches need to be compared experimentally, and the corresponding
quality vs. complexity trade-off needs to be be evaluated.

Acknowledgements

We thank Sigma Prime for their support in providing the details of the AAPP,
as well as a sample of instances from Ethereum’s Beacon chain.

References

[1] John Forrest and Robin Lougee-Heimer. Cbc user guide. In Emerging theory,
methods, and applications, pages 257–277. INFORMS, 2005.

[2] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[3] Satalia Team. Technical report: Attestation packing problem (abridged).
Technical report, Satalia (NPComplete Ltd), 2022.

[4] Satalia Team. Technical report: Exact approaches for the attestation aggre-
gation and packing problem. Technical report, Satalia (NPComplete Ltd),
2022.

9

	Introduction
	Experimental setup
	Instances
	Approach

	Results
	Optimality gap
	Solver performance
	Aggregating is fast, packing is slow
	Lighthouse's approach: practice vs. theory
	Performance of the MIP solver
	Predicting metrics of interest

	Future work
	Decomposition approach
	Replacing the MIP approach
	Pruning candidate attestations
	Other heuristic approaches

