
Technical Report:

Exact Approaches for the

Attestation Aggregation and Packing Problem

Satalia & Sigma Prime

November 25, 2022

Abstract

We explore two exact approaches for solving the Attestation Aggrega-
tion and Packing Problem (AAPP, [6]). Both approaches are optimality-
preserving.

The first approach (which we refer to as the MIP approach) involves a
first stage to deal with the aggregation part of the problem, and a second
stage, based on a a mixed integer programming (MIP) formulation, to
deal with the packing part of the problem. The second approach (which
we refer to as the decomposition approach) decomposes the problem into a
main problem and many sub-problems. The main problem can be solved
efficiently using dynamic programming, the sub-problems are are smaller
instances of a special case of the AAPP, which can be solved optimally
with any exact approach (including the presented MIP approach). The
purpose of the decomposition approach is to help with the potential scal-
ability issues of the MIP approach on larger instances.

Finally, we outline some alternatives to MIP.

Contents

1 Introduction 3

2 The MIP approach 3
2.1 Observations . 3
2.2 Aggregation problem . 4
2.3 Packing problem . 8

3 Decomposition approach 9
3.1 Sub-problems . 10
3.2 Main problem . 11

4 Beyond the MIP approach 12
4.1 Enumeration approach . 13

1

5 Conclusions 14

2

1 Introduction

The present document outlines two exact approaches for solving the Attestation
Aggregation and Packing Problem (AAPP) defined in [6]. For convenience,
we will not include the formal definition of the problem here. Instead, we
will assume familiarity with [6] and commit to use the same notation. Where
a symbol is used in different contexts, e.g., the symbol e for epochs and set
elements, the meaning will be clear from the context.

While the main use case for the proposed exact approaches is to find optimal
solutions to the AAPP, we will take scalability into account for practical reasons.

2 The MIP approach

The MIP approach is based on the idea of re-framing the AAPP as a combination
of an aggregation problem and a packing problem. This is similar in spirit to
the approach taken by Sigma Prime’s Lighthouse1. Like Lighthouse, the MIP
approach solves these two problems in successive stages. Unlike Lighthouse, the
MIP approach is complete and is guaranteed to (eventually) find an optimal
solution.

2.1 Observations

Let A† ⊆ 2A be the set of sets of attestations satisfying the aggregation condi-
tions, i.e.,

A† = {B | Va ∩ Vb = ∅ ∧ da = db, ∀a, b ∈ B, B ∈ 2A} (1)

Note that any set S ⊆ A†, |S| ≤ N is a feasible solution of the AAPP, and that
each element of A† represents a valid2 aggregated attestation. The re-framing of
the AAPP behind the MIP approach is based on the following two Observations

O1 Because every attestation, regardless of the size of its attester set, takes
up exactly one of N slots within a block, including an attestation a ∈ A†

with attester set Va in a solution is non-worse than including an attestation
b ∈ A† with attester set Vb ⊆ Va,

O2 An attester v ∈ V appearing in a solution S contributes only once to the
reward of that solution, regardless of how many times it appears in the
attester sets of attestations included in S.

The consequence of O1 is that attestations that are maximal with respect to
attester coverage are the best (or at least non-worse) candidates for inclusion in
a solution of the AAPP. The set of such attestations is the set

A⋆ = {B | ̸ ∃C ∈ A†, VB ⊂ VC , B ∈ A†} (2)

1Ethereum consensus client.
2In the sense of the conditions for aggregation.

3

In other words, all attestations in A⋆ are non-dominated with respect to the
coverage of their attester set, i.e., they are non-worse than any other attesta-
tions in A† at covering their particular attester set. Note that these attestations
are also maximally aggregated, i.e., they cannot be aggregated with any other
attestation in A†. If they were, they wouldn’t be maximal with respect to at-
tester coverage3. Note that, according to the above definition, A⋆ could contain
aggregated attestations that are equivalent with respect to attester coverage.
This is not a limitation for our approach.

This has direct implications for the search of an optimal solution because,
given a set of attestations A, there is at least some optimal solution S to the
AAPP which is a subset of A⋆. It has also implications for the search of a good
quality (but not necessarily optimal) solutions since, due to the fixed capacity
N , attestations not in A⋆ are less likely to be part of a good-quality solution.

Considering 2A
⋆

, as opposed to 2A
†
, as the search space has two main ad-

vantages

• first, the former represents a smaller search space, i.e., |2A⋆ | ≤ |2A† |, and

• second, because every element of A⋆ already satisfies all the aggregation
constraints, we can safely ignore them going forward.

Computing A⋆ is what we refer to as the aggregation problem, which is the focus
of the first stage of our MIP approach.

The consequence of O2 is that, once the aggregation problem has been
solved, the AAPP reduces to choosing N aggregated attestations from A⋆ so
as to maximise the reward to be gained by including the votes of the attesters
they cover. This is a weighted maximum coverage problem, which needs to be
solved exactly in order for our approach to guarantee optimality. This is what
we refer to as the packing problem.

2.2 Aggregation problem

In this section we outline a method to compute A⋆ using a graph representation
of the set of attestations A.

Let G = (V,E) be an undirected graph with vertices V and edges E, where
V = A, and

E = {(a, b) | {a, b} ∈ A†} (3)

i.e., each vertex represents one of the attestations in A, and each edge encodes
the compatibility for aggregation of the attestations it connects.

A clique of G is a set C ⊆ V such that each pair of vertices in the clique is
connected by an edge, i.e., (a, b) ∈ E,∀a, b ∈ C, a ̸= b. Note that, due to our
encoding of G, a clique represents an aggregate attestation from attestations
in A, and the set of all such attestations is A†. A maximal clique is a clique

3If they were, it would be possible to find an attestation with the same attestation data
and disjoint set of validators to aggregate them with, which would lead to a higher attester
coverage, which directly contradicts the definition.

4

that cannot be further extended with another vertex, and thus corresponds to
a maximally aggregated attestation from A, and the set of all such attesta-
tions is Ã ⊆ A†. Note that while the elements of Ã are maximally aggregated
attestations, they are not necessarily non-dominated, and therefore Ã ⊇ A⋆.
For instance, consider the two hypothetical maximally aggregated attestations
a, b ∈ Ã, their respective attester sets could be

Va = {v1, v2, v3} (4)

Vb = {v1, v2, v3, v4}. (5)

Obviously a is not maximal with respect to attester coverage, since choosing b
is non-worse than choosing a in terms of covering {v1, v2, v3}. In other words,
a /∈ A⋆ but b ∈ A⋆.

In the following, we present a method to compute A⋆ by first computing
Ã by enumerating all the maximal cliques, and then eliminating all the aggre-
gated attestations that are dominated with respect to attester coverage, i.e.,
those whose attester sets are proper subsets of of the attester set of some other
attestation in Ã. Again, this is not a strict requirement for the approach, but
is likely to make the search space more compact.

Note. For the purpose of solving the AAPP with the MIP approach, it would
be sufficient to choose N attestations from A†. Computing A⋆ is a way to reduce
the search space of the packing problem while preserving the optimality of the
approach.

Most of the existing algorithm for enumerating maximal cliques are variants of
the Bron-Kerbosch [1] algorithm. This is a recursive algorithm that maintains
three sets of vertices R, P , and X respectively modelling the maximal clique be-
ing built, the vertices that could be included in the clique, and the vertices that
won’t be included in the clique. The essence of the Bron-Kerbosch algorithm
is summarised in the pseudo-code below, where we denote by N(v) the set of
vertices connected by some edge to a vertex v ∈ V of a given graph G = (V,E).

Algorithm 1 Original Bron-Kerbosch

procedure BronKerbosch(R,P,X)
if P ∪X = ∅ then

report R as maximal clique
end if
for v ∈ P do

BronKerbosch(R ∪ {v}, P ∩N(v), X ∩N(v))
P ← P \ {v}
X ← X ∪ {v}

end for
end procedure

5

While the original Bron-Kerbosch algorithm would correctly produce the set
of maximal cliques in a graph, the algorithm has been improved since its first
inception in 1973. Two main developments are the use of pivoting [4, 2] and the
use of vertex ordering [3]. The above techniques can be applied to the general
maximal clique enumeration problem and are therefore relevant for us.

Pivoting. The idea of pivoting is based on the observation that, given a vertex
p ∈ P ∪X, any maximal clique must contain p or one of its non-neighbours, i.e.,
P \N(p) (otherwise, the clique could be extended by adding p to it), therefore
only non-neighbours of p need to be explored while extending R (otherwise
a non-maximal clique is being explored). A strategy for choosing p that has
proven to be effective both theoretically and experimentally is to choose

p = argmin
p∈P∪X

|P \N(p)|. (6)

This variant would roughly translate to the following pseudo-code.

Algorithm 2 Bron-Kerbosch with pivoting

procedure BronKerbosch(R,P,X)
if P ∪X = ∅ then

report R as maximal clique
end if
p← argmin

p∈P∪X
|P \N(p)|

for v ∈ P \N(p) do
BronKerbosch(R ∪ {v}, P ∩N(v), X ∩N(v))
P ← P \ {v}
X ← X ∪ {v}

end for
end procedure

Vertex ordering. The vertex ordering variant is based on the idea that, by
choosing the ordering in which the recursive calls are made, i.e., by choosing
the ordering in which vertices in P are explored, one can reduce the size of the
recursive search tree. As for the possible orderings, using a degeneracy ordering
has been associated with better worst-case run time guarantees. In order to
obtain a degeneracy ordering, one approach is to start with an empty ordering
and iteratively remove a minimum degree vertex from the graph and append it
to the ordering until the graph is empty. This is done in the outermost level of
the recursion, while the innermost levels still use a pivoting strategy.

6

Algorithm 3 Bron-Kerbosch with ordering

procedure BronKerboschOrdering(G = (V,E))
v1, v2, . . . , vn ← ComputeOrdering(G)
for i ∈ {1, . . . , n} do

P ← {vj |j > i} ∩N(vi)
R← {vi}
X ← {vj |j < i} ∩N(vi)
BronKerbosch(R,P,X)

end for
end procedure

Aside from the above improvements to the original Bron-Kerbosch algo-
rithm, the fact that V = A allows us to consider two additional optimisations.
First, some of the attestations in A will expectedly be unaggregated, and will
therefore correspond to vertices connected with all the vertices for attestations
that do not include them, which could be many. This can increase the cost
of enumerating all cliques, and can be handled as a pre-processing and a post-
processing step, discussed below under unaggregated attestations. Second, the
aggregation conditions state that two vertices cannot be connected if their at-
testation data differs. This means that G = (V,E) as defined above could
contain many disconnected sub-graphs partitioned by attestation data and, as
a consequence, the set of maximal cliques will be partitioned in the same way.
Solving the maximal clique enumeration for each attestation data independently
reduces the size of the graphs to be processed, which we cover attestation data
partitioning below.

Unaggregated attestations. We want to reduce the complexity of enumer-
ating all the cliques for graphs arising in the context of the AAPP. Such graphs
are of the form G = (V = A,E). In particular, we’re interested in dealing
with unaggregated attestations, which are compatible with many cliques and
can therefore contribute to generating a large set of maximal cliques.

Let us denote by A1 = {a | a ∈ A, |Va| = 1} the set of unaggregated
attestations in A. Our strategy for dealing with these is to remove them from
G altogether, enumerate all the maximal cliques for G′ = (A \ A1, E′), where
E′ = {(a, b) | (a, b) ∈ E, a, b ∈ A \A1}, and then add all a ∈ A1 back in all the
compatible cliques. We denote this set as Ã′.

Note that in general Ã′ ⊆ Ã. This is not a limitation, as it can be shown
that Ã′ ⊇ A⋆ holds. In other words, the additional cliques that would have been
generated by considering A1, i.e., Ã \ Ã′ are necessarily dominated by the ones
in Ã′.

(Potential) attestation data partitioning. As mentioned above, the graph
G = (V,E) is partitioned by attestation data. This suggests that the maximal
clique enumeration can be decomposed, which may have a positive impact on the
performance. Let Ad = {a | a ∈ A, da = d}, ∀d ∈ D. We can then generate all

7

the aggregated attestations that are maximal with respect to attester coverage
A⋆

d for Ad, by defining Gd = (Ad, E) where E is defined in the obvious way. And
following the approach described above. Then, the set of all maximal cliques
for A can be then defined as

A⋆ =
⋃
d∈D

A⋆
d. (7)

The intuition is that calculating A⋆
d, ∀d ∈ D is more efficient than computing

A⋆ for A as a whole4.

Other approaches. The presented algorithms are well-established, and tend
to achieve good performance on generic graphs, and have the advantage of
simplicity, which can be a desirable property for the type of use case discussed
here. However more sophisticated algorithms exist. Most of these target graphs
with particular properties. On these graphs, these algorithms tend to provide
better worst-case complexity guarantees. Some others address generic graphs,
and can provide better guarantees than the algorithms based on Bron-Kerbosch.
We take stock of these algorithms, which can be explored in a successive phase
if necessary.

Note. whichever technique is chosen to enumerate the set A⋆, its efficiency is
crucial to the viability of both approaches proposed here. In the following, we
assume that A⋆ has been found in a way or another, and is available as an input
to the packing stage.

2.3 Packing problem

As we have mentioned above, the set of all aggregated attestations that are
maximal with respect to attester coverage A⋆ is an optimality-preserving subset
of the search space of the AAPP. Based on this premise, the AAPP can be
easily formulated as a weighted maximum coverage problem.

The weighted maximum coverage problem involves choosing at most k from a
set of sets S = {S1, . . . , Sn}, where each element e ∈

⋃
i∈{1,...,n} Si is associated

with a weight w(e) ∈ N≥0. The goal of the problem is to maximise the sum of
the weights of the elements that are part of at least one of the k sets that are
chosen to be part of the solution. Like its non-weighted variant, the weighted
maximum coverage problem is unfortunately NP-hard. It be formulated as a

4This needs to be proven experimentally.

8

mixed integer program (MIP) as follows

maximise
∑
e∈E

w(ej) · yj (8)

s. t.
∑

xi ≤ k (9)∑
ej∈Si

xi ≥ yj

yj ∈ {0, 1}
xi ∈ {0, 1}

where S = {S1, . . . , Sn} is the set of sets that can be included in a solution
and E = {e1, . . . , em} =

⋃
Si∈S Si is the set of elements in any of the sets. The

variables xi ∈ {1, . . . , n} and yj ∈ {1, . . . ,m} encode, respectively, the decision
to choose a set Si in to be part of the solution, and the fact that element ej is
covered by the solution.

Mapping. Under the premise that A⋆ is available, the mapping of the AAPP
to this problem is trivial. Let S = {Va | a ∈ A⋆}, and k = N , where N has
the meaning defined in [6]. A solution for the weighted maximum coverage
problem defined this way is a solution to the original AAPP. Moreover, an
optimal solution to this problem is an optimal solution of the original AAPP.

This formulation can be directly plugged into a MIP solver to find an optimal
packing of N maximally aggregated attestations.

Other exact approaches. Of course, the weighted maximum coverage prob-
lem can be solved optimally by any other exact approach. Such an approach,
e.g., constraint programming (CP), would likely benefit from a different mod-
elling. In this section we focus on MIP because of the wide availability of these
kinds of solvers.

Greedy algorithm. A greedy algorithm exists and is indeed the algorithm
currently employed by the Lighthouse client developed by Sigma Prime. This
greedy algorithm has a guaranteed approximation ration of 1 − 1/e ≈ 0.623 of
the optimum, which is not suitable for the purpose of this work, but may be of
interest for the follow-up implementation of an efficient algorithm. Note that
in Lighthouse, the packing problem is defined on a set of attestations that have
been pre-aggregated heuristically, which differs from the approach presented
here.

3 Decomposition approach

Solving the AAPP using a MIP solver may represent a suitable approach, unless
the problem is too large. For these scenarios, we propose to use a decomposition
approach.

9

The main idea behind this approach is to reduce the complexity of solving
the AAPP by separating the parts that can be handled efficiently with dynamic
programming from the ones that are strictly NP-hard. In particular, this ap-
proach is based on the observation that, when choosing which attestations to
include in a solution, the contribution of attestations with different attestation
data is additive, i.e.,

da ̸= db ⇒ Reward{a, b} = R ({a}) +R ({b}) , ∀a, b ∈ A. (10)

This suggests that, by partitioning an instance of the AAPP by attestation
data, we could re-frame it as the problem of choosing the number qd ∈ N≥0 of
sets of attestations to include from each Ad, where d ∈ D. This is reminiscent
of the Knapsack Problem [5], which can be solved efficiently with dynamic
programming.

In order for a solution to the AAPP to be optimal, one needs to choose the
best qd attestations for d ∈ D, i.e., the ones that will collectively provide maxi-
mal reward. This includes of course both attestations in Ad but also aggregated
attestations A†

d from attestations in Ad.
This is, once again a weighted maximum coverage problem (albeit expectedly

a much smaller one), and thus NP-hard. The value of this decomposition is that
it allows us to treat the full AAPP as a combination of a dynamic programming
problem (which we will refer to as main problem) and many small NP-hard
problems (which we will refer to as sub-problems), as opposed to one large
NP-hard problem. This is typically a much better outlook.

In the rest of this section, we will characterise both the main problem and
the sub-problems. Because the former depends on the latter, we will discuss the
sub-problems first.

3.1 Sub-problems

Let d ∈ D be a unique attestation data in the input. We denote by Ad the
set of all attestations for d, and k ∈ N≥0 a positive integer. We now consider
the AAPP problem defined by A = Ad and N = k, and denote by g(d, k) any
optimal solution for such AAPP. For a given d ∈ D and k ∈ N≥0, g(d, k) can be
found using the MIP approach presented in Section 2, or any equivalent exact
approach.

Note For some k ∈ N≥0 it is possible that |g(d, k)| < k. This represents a
sort of fixpoint for g, and reflects two possible scenarios, either

• there are fewer than k sets of attestations from 2Ad to choose from, or

• R (g(d, k)) = R (g(d, k − 1)), i.e., adding more sets of attestations doesn’t
increase the value of g(d, k), i.e., Vg(d,k−1) ⊇ {v | v ∈ VAd

, r (e(d), v) > 0}.

10

3.2 Main problem

Now that we have defined the sub-problems and that we can refer to their
optimal solutions, we have all the ingredients to define the main problem as a
dynamic programming problem.

Let D = {d1, . . . , dn} be a set of n ∈ N≥0 distinct attestation data, and let
m ∈ N≥0 be a non-negative integer. We observe that, under the premise that
g(di, k) for some i ∈ {1, . . . , n} and some k ∈ {0, . . . ,m} is the optimal (most

rewarding) set of k aggregated attestations 2A
†
d , the AAPP reduces to finding

an appropriate value qd ∈ {0, . . . ,m} for every d such that∑
d∈D

qd ≤ m, (11)

in other words, qd1
, . . . , qdn

uniquely identify a packing S of at most m aggre-
gated attestations, where for each d ∈ D we’re choosing the qd best attestations
to include. The actual packing can then be derived as

S =
⋃
d∈D

g(d, qd). (12)

To find the optimal solution, we proceed with a dynamic programming ap-
proach. We denote by f(k,m) the optimal packing of m aggregated attesta-

tions
⋃

i∈1,...,k 2
A†

di from the attestation sets of the first k attestation data. As
customary, we first identify a base case, and then define the non-base cases
recursively.

Base case. Note that

f(0,m) = ∅, ∀m ∈ N≥0 (13)

R (f(0,m)) = 0 (14)

i.e., the only solution for the main problem considering no attestation data at
all5 is the empty set, which yields a reward of 0, no matter the available capacity.

Non-base cases. Based on this, we can build our non-base case as follows

f(k,m) = argmax
q∈{0,...,min(m,|g(k,m)|)}

R (f(k − 1,m− q) ∪ g(dk, q)) (15)

i.e., the best packing f(k,m) of at most m sets of aggregatable attestations
considering only the first k attestation data {d1, . . . , dk} ⊆ D is the set that
maximises the total reward that can be obtained by choosing the best m −
q aggregated attestations from either of the f(k − 1,m − q), and the best q
aggregated attestations from g(dk, q).

5It is possible to define the base case as f(1,m) however its definition is already encom-
passed by the definition for the non-base cases, so starting from 0 is more succinct.

11

Note that the domain {0, . . . ,min (m, |g(k,m)|)} of q takes into account the
fact that it is possible that g(k,m) < m for some values of m, and therefore
adding more sets than available in g(k,m) has no meaning.

The optimality of this approach is guaranteed by the fact that f(k− 1,m−
q) is the optimal packing for attestation data {d1, . . . , dk−1} and a maximum
capacity of m − q and, when extending our options to attestation sets for dk,
we consider all values of q from 0 (which corresponds to not including any
attestation set for dk) to m (which corresponds to choosing all m sets from
the best m attestation sets for dk). Note that at any time, only one value
of qi, i ∈ {1, . . . , n} is chosen. The fact that attestation sets for different
attestation data do not overlap in terms of their contribution to a solution,
means that the reward of a given packing is additive, and can be computed as

R (f(k,m)) = max
q∈{0,...,m}

R (f(k − 1,m− q)) +R (g(di, q)) . (16)

It follows that f(n,N), i.e., the optimal packing considering all attestation
data and a maximum capacity of N (where N has the same meaning as in [6]),
corresponds to the optimal solution of the original AAPP.

Note that the property |f(k,m)| ≤ m in Equation 11 implies that it is
possible that |f(k,m)| < m for some m ∈ N≥0. Like for g(·, ·), this suggests a
sensible stopping condition for the search for f(k,m). This stopping condition
can be used to avoid exploring f(k,m+ 1) if |f(k,m)| = |f(k,m− 1)|.

Improvements. Given that finding each g(d, k) is NP-hard, it makes sense to
help the MIP approach solve the sub-problems by injecting as much information
as we can from the main problem. One information that we have available when
requesting a g(d, k) is the reward of g(d, k − 1), i.e., Reward(g(d, k − 1)). We
know that adding more aggregated attestations to g(d, k) must at least achieve
the same reward, plus the reward to be obtained by greedily including the single
most rewarding aggregated attestation not already in g(d, k − 1). Let denote
such attestation by g+d,k−1. We can now inject the following additional constraint
in the MIP model of Equation 9∑

e∈E

w(ej) · yj ≥ R (g(d, k − 1)) +R
(
g+d,k−1

)
. (17)

Our expectation is that such a constraint could help prune branches of the MIP
search tree that cannot reach a better-than-greedy quality.

4 Beyond the MIP approach

One of the advantages of MIP is that its modelling language is very simple, and
a model for a problem such as the AAPP can be developed rather quickly. A
notable disadvantage of MIP, however, is that solving a problem to optimality
can take a long time.

12

For the purpose an offline experimental evaluation, such as the one carried
out for Sigma Prime by Satalia, this is not critical. However, if we were to
deploy such a MIP-based approach on the blockchain, run time performance
would quickly become a relevant issue. A proposers has an incentive to produce
their block in less than a second, and producing a block involves more than
just aggregating attestations, therefore a MIP approach may just not deliver
the required performance in that context. Another potential issue when looking
to use MIP for blockchain work is that most high-performance MIP solvers are
proprietary and require expensive commercial licenses. This may reduce the
viability of such approaches for some validators, and goes against the idea of
democratising blockchain work.

It makes therefore sense to explore some alternatives to MIP, particularly in
the context of the decompositon approach outlined above, where the size of the
AAPP problem instances to solve is expected to be rather small. On such small
problems, MIP would perform significantly better than it does when solving the
AAPP as a whole (without decomposition), however MIP solvers also tend to
have a overhead when starting up, which would have to be paid for every sub-
problem in the decomposition, which is another reason to look for an alternative
to MIP.

4.1 Enumeration approach

At their core, most MIP approaches carry out a clever tree search called branch
& bound. At each node of the search tree, a decision is made in terms of the value
of a variable, and every leaf of the tree corresponds to a fully-assigned feasible
solution. The cleverness of branch & bound lies in considering a linear relaxation
of the original problem to make an optimistic assessment of the quality that can
be achieved by exploring a given sub-tree. If the quality is lower than the one of
the best found solution, the sub-tree doesn’t need to be explored. This means
that, potentially, large portions of the search space don’t need to be explored
at all.

One particularly interesting alternative to MIP, is to implement a similar
tree-search approach by hand. Given that the instances of the AAPP solved in
the decomposition approach are simpler than the overall AAPP (for instance,
all attestations have the same attestation data by definition), perhaps we can
be clever enough that we don’t need a MIP solver at all.

Recall that the overall MIP approach involves an aggregation step carried out
using maximal clique enumeration, followed by a packing step that consists in
solving a weighted maximum k-coverage problem using MIP. In the enumeration
approach, the aggregation step would be carried out in the same way, using
maximal clique enumeration. The packing step, however, is replaced by an
exhaustive branch & bound tree search. Given that the aggregation step is
unchanged, the rest of the section focuses on the packing step.

The two procedures outlined below are an example of how such a branch &
bound procedure could be implemented. They assume that the attestations A
passed as input have all the same attestation data, and solve the problem of

13

finding the most rewarding set of aggregatable attestations of size at most k (as
required for our decomposition approach). At each call to EnumSolveAux, the
procedure receives a working aggregated attestation W (initialised to ∅ in the
main procedure), and considers adding one of the remaining attestations to be
included c ∈ R to it. If the newly obtained attestation C is better than a global
best B, then the best is replaced by C. After considering each r ∈ R, the set of
remaining attestations R is pruned to remove all attestations that overlap with
C (as those are illegal for aggregation), and the potential additional reward by
adding the best k − |C| remaining validators is computed. If the reward of the
current solution C plus the potential additional reward is insufficient to beat B,
then it makes no sense to explore expanding C even more. Conversely, if there
are potential gains to be made by further extending C, a recursive call is made
to EnumSolveAux using C as the new working solution, and the updated R
as the new set of remaining attestations.

The procedures rely on the Reward, SortDescending, and Truncate
procedures, which have the expected meaning.

Algorithm 4 Enumeration approach

procedure EnumSolve(A, k)
B ← ∅ ▷ best solution found so far
R← A ▷ remaining attestation to (possibly) include
EnumSolveAux({}, R,B, k)
return B

end procedure

The enumeration approach hasn’t been tested on real data but we think it
is a viable replacement for the MIP approach in the context of our decompo-
sition approach. Moreover, other strategies to prune ineffective sub-trees can
be devised, as well as strategies to decide in which order to explore additional
candidate attestations to include (c ∈ R in the pseudo-code).

5 Conclusions

We have outlined a MIP approach and a decomposition approach based on
dynamic programming to solve the AAPP. Both approaches are optimality-
preserving. The latter has the potential to perform significantly better than
the MIP approach on larger instances of the AAPP, and represents a candidate
approach to deploy in production. Due to the shortcomings of requiring a MIP
solver, and the risk of insufficient run time performance of the MIP approach,
we have also outlined an alternative enumeration approach based on a custom
branch & bound tree search. We believe that the decomposition approach paired
with the enumeration approach to solve the decomposition sub-problems can be
a viable approach to solve the AAPP within an Ethereum client.

14

Algorithm 5 Enumeration approach (aux)

procedure EnumSolveAux(W,R,B, k)
if R ̸= ∅ ∧ |W | < k then

for c ∈ R do
C ←W ∪ {c}
if Reward(C) > Reward(B) then

B ← C ▷ overwrite global best if needed
end if
R′ ← R/{r | r ∈ R, Vr ∩ VC = ∅} ▷ prune remaining atts.
P ← {Reward(r) | r ∈ R′} ▷ gather remaining rewards
P ← SortDescending(P) ▷ sort remaining rewards
P ← Truncate(x, k − |C|) ▷ consider best k − |C| rewards
p←

∑
P ▷ optimistic additional reward

if Reward(C) + p > Reward(B) then
EnumSolve(C,R′, B, k) ▷ call recursively on C

end if
end for

end if
end procedure

References

[1] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an
undirected graph. Commun. ACM, 16(9):575–577, sep 1973.

[2] Frédéric Cazals and Chinmay Karande. An algorithm for reporting maximal
c-cliques. Theoretical Computer Science, 349(3):484–490, 2005.

[3] David Eppstein and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs. In International Symposium on Experimental Al-
gorithms, pages 364–375. Springer, 2011.

[4] Ina Koch. Enumerating all connected maximal common subgraphs in two
graphs. Theoretical Computer Science, 250(1):1–30, 2001.

[5] Silvano Martello and Paolo Toth. Algorithms for knapsack problems. North-
Holland Mathematics Studies, 132:213–257, 1987.

[6] Satalia Team. Technical report: Attestation aggregation & packing problem.
Technical report, Satalia (NPComplete Ltd), 2022.

15

	Introduction
	The MIP approach
	Observations
	Aggregation problem
	Packing problem

	Decomposition approach
	Sub-problems
	Main problem

	Beyond the MIP approach
	Enumeration approach

	Conclusions

