Technical Report:
Attestation Aggregation and Packing Problem

Satalia & Sigma Prime

November 24, 2022

Abstract

The Attestation Aggregation and Packing Problem (AAPP) arises in
the context of Ethereum’s Proof of Stake (PoS) consensus protocol. This
document aims at formally defining the problem.

Lighthouse, Sigma Prime’s Ethereum consensus client, uses a greedy
heuristic to generate solutions to the AAPP. The goal of the present in-
vestigation is to assess how far the solutions generated by Lighthouse’s
greedy heuristic are from the optimal solutions. Ultimately, the goal is to
either confirm that the current algorithm is sufficiently good for practical
purposes, or to design an algorithm with better quality guarantees.

Contents

11 Background|

[1.4  Agreeing on one history| . . . . . .. ...
I1.4.1 Longest chain|. . . . . ... ... ... ... ...,
I1.4.2  Voting on one history| . . . .. .. ... .. ... .....

2 A : T Eil |

[2.1 _Epochs, slots, committees| . . . . ... ... ... 0000

R W W W w Ny NN NN

(S IS "N

I3 The Attestation Aggregation

and Packing Problem|

© 00 o3



4 Existing algorithm)| 9

[4.1  Aggregation stagel . . . . . . . ... Lo 9
[4.2  Packing stage| . . . . . ... oo 9
[5_Conclusions| 10

1 Background

This section aims to provide a high-level discussion of some concepts behind
blockchain technology, specifically those relevant to the definition of the AAPP.

1.1 Decentralised trustless architecture

At its core, and irrespective of its practical applications, a blockchain is a
database designed to be immutable and tamper-proof. Unlike other technolo-
gies which rely on trusted central authorities to guarantee the integrity of the
stored data, a blockchain achieves the same goal using a decentralised trustless
architecture.

This decentralised trustless architecture is enabled by a combination of cryp-
tography, which allows every participant in a blockchain to independently verify
the integrity of the stored data, and consensus protocols, which allow partici-
pants to reliably agree on a single version of the blockchain. The necessity to
agree on the history of the blockchain is a side effect of the distributed nature of
the blockchain, which means that the participants’ view of the blockchain can
become out of sync.

1.2 Blocks and chains

The blockchain is the historical record of the transactions happened so far.
Transactions are grouped into blocks, and valid blocks become part of the history
when they are appended to the blockchain. Because of the lack of a centralised
authority, any participant could virtually produce a block and broadcast it to
the rest of the participants.

1.3 Consensus protocols

Consensus protocols are rules that all participants in a blockchain must respect.
Such protocols are designed to provide incentives for participants to do useful
work for the blockchain (e.g., producing new blocks, recording new transac-
tions), and to protect the blockchain from attacks that aim at tampering with
the blockchain’s history. Participants who play by the rules are rewarded by
the protocol, and participants who don’t are penalised. In this section we give
an overview of two common types of consensus protocols: Proof-of-Work and
Proof-of-Stake. We cover the former for historical reasons, and the latter be-
cause it’s the context for the AAPP.



1.3.1 Proof-of-Work

A Proof-of-Work (PoW) consensus protocol discourages tampering by making it
unreasonably hard to modify the history of the blockchain. In order to modify
the blockchain, a participant needs to demonstrate that they have carried out
some work that is expensive and cannot be avoided. While doing the work is
hard, verifying that that work has been done is easy. This asymmetry is at the
core of the security offered by PoW protocols.

Many blockchains, including Bitcoin and Ethereum (pre-Merge), are based
on PoW consensus protocols.

1.3.2 Proof-of-Stake

A Proof-of-Stake (PoS) consensus protocol discourages bad behaviour by requir-
ing that participants put forward, or stake, a large sum of native cryptocurrency
in order to earn the right to produce a new block. If a participant performs le-
gitimate work, they get rewarded with some of the native currency, but if they
fail to do so, they lose the resources that they have staked. The current version
of Ethereum’s (post-Merge) consensus protocol is of this kind.

1.3.3 Incentives

Due to the fact that it relies on a distributed trustless architecture, a blockchain
requires participants to carry out useful work, e.g., producing new valid blocks,
and to avoid disruptive behaviour, e.g., tampering with the blockchain history.
To this end, consensus protocols make extensive use of (positive or negative)
reward mechanisms to incentivise participants to align with the interests of
the chain. Rewards are quantified in cryptocurrency, e.g., Bitcoin, Ether, etc.,
native to the blockchain.

1.4 Agreeing on one history

The distributed nature of the blockchain leads to some more complications. Be-
cause participants can produce and share new blocks all the time, the chain
doesn’t always look like a linear sequence of blocks. For instance, two partici-
pants may produce two “competing” blocks with the same predecessor, resulting
in a tree of blocks. It should be stressed that this doesn’t necessarily mean that
one of the two participants is trying to do something nefarious, these situations
can be often caused by network latency.

The trouble with trees of blocks is that each branch of the three corresponds
to a different “truth” about the state of the blockchain, which needs to be
reconciliated in order for the chain to operate correctly and efficiently. From
the perspective of the participants, this means agreeing on which branch of the
tree represents the real truth. Blocks that are not part of such branch are called
uncle blocks.



1.4.1 Longest chain

In some blockchains, a convention among the participants is that, in presence of
a tree of blocks, the longest branch of the tree represents the one true history.
In order to incentivise participants to commit to the longest branch, consen-
sus protocols reward block producers asymmetrically, i.e., non-uncle blocks are
rewarded significantly more than uncle blocks.

1.4.2 Voting on one history

Aside from the introduction of Proof-of-Stake, Ethereum’s new consensus proto-
cols introduces some novelties also around the mechanism to agree on the true
history of the blockchain. Instead of adopting the longest branch as the one
true blockchain, the protocol relies on wvalidators, i.e., participants who agreed
to stake their currency and provide services to the blockchain. Among other
things, validators propose new blocks, and cast votes to elect what they believe
is the head, i.e., the latest block of the correct branch, of the blockchain.

Such “votes” are called attestations, and are the subject of the AAPP defined
in this document.

2 Attestations in Ethereum

As discussed in the previous section, a validator votes for the head of the chain
by producing an attestation. A fundamental property of attestations is that,
under certain conditions they can be aggregated.

An attestation is defined by the following data

e a set of attesters (possibly 1) that “back” it,

e some attestation data (among other things, the slot in which the at-
testation was produced, the hash of the block believed to be the head of
the chain, and the hashes of two - source and destination - blocks, which
are related to the mechanism by which older parts of the blockchain are
finalised),

e a Boneh-Lynn-Shacham (BLS) signature produced using the private
keys of the attesters.

The signature allows participants to verify the integrity of an attestation. More-
over, a crucial property of the BLS signature scheme is that it allows to aggregate
multiple signatures into a single signature. This is very useful, as it enables par-
ticipants to aggregate multiple attestations into a single one, which means that
more votes can be included in a block. In order to be able to aggregate two
attestations, the following conditions must hold

1. their attestation data must be identical,
2. their sets of attesters must be disjoint.

An aggregated attestation can contain a maximum of 2048 attesters.



2.1 Epochs, slots, committees

Note: this document was written pre-Merge, but its focus was post-Merge Ethe-
reum. In the following, the reader should assume that we are referring to post-
Merge Ethereum.

Time in Ethereum is split in successive epochs of 6.4 minutes. Each epoch
is further split into 32 slots of 12 seconds. Each block has a corresponding
slot, however not all slots necessarily have a corresponding block. In fact, there
should be only one block per slot, and validators are penalised for proposing
more than one.

At each epoch one validator (the proposer) is selectecﬂ to propose a new
block at a given slot. When its assigned slot starts, the proposer has one chance
to produce a valid block.

At each epoch, the validators are shuffled and grouped into committees. Each
committee has n € [128,2048] validators. A slot has m € [1,64] committees.
The majority of the validators in a committee become attesters and will have to
produce an attestation. Among these a small amount, on expectation 16, will
become aggregators and their role will be to aggregate attestations.

2.2 Timeline

This section gives a brief overview of the timelines involved. These are not
crucial to the problem formulation, but help understanding where the problem
comes from, and why there is only a very limited amount of time available to
solve it.

At each epoch, the work of each validator (be it a proposer, an attester, or
an aggregator) needs to be carried out in the time of the slot assigned to them.
The time before and after the assigned slot is still used to do useful work, mostly
around gathering information, or finishing work that wasn’t completed on time.

Before the start of their assigned slot, a proposer will start gathering at-
testations produced up to 32 slots earlier, as well as transactions, to include in
the block. When the slot starts, the proposer will produce and share the block
as quickly as possible, to maximise the likelihood that it will be considered by
the attesters.

The attesters will wait for the block to be received, or up to 4 seconds
from the start of the slot, and then make a decision on the head of the block.
Depending on their fork choice rule, they may choose the newly created block,
the block produced at the previous slot, or some other block. Within 8 seconds
from the start of the slot, they will send their attestation to a sub-network where
aggregators are listening for attestations.

Aggregators will gather all the attestations, and try to aggregate as many
as possible into one. Before the end of the slot, the aggregators will broadcast

1Since we’re operating in a decentralised and trustless context, nobody is actually “select-
ing” a validator to propose a block. Instead, the validators will independently and determin-
istically derive their role based on the agreed state of the blockchain.



committee

the aggregated attestations with the network. These aggregated attestations
(and possibly some unaggregated ones) will be then gathered by the proposer
of the next slot, in a continuous loop.

The diagram in Figure [I] summarises the above timeline.

1 epoch 6.4 minutes (22 slots)

—

epoch k-1 epoch k epoch k+1

at the beginning of each epoch k
validators are 3rouper,l into
slots, and within slots into

committees (up to 64 per slot)

for the next h k+1
" epoe 1 slot 12 seconds

validote previous block;

PmPoTU i iy || ereduce “'Lj SN delay the attestation will choose
exactly 1 VAl Ak s i & 27 U= a block according to the validator's
s fork choice rule; i the block produced
in the current slot has been received
from up to on time, the attestation will most
Attestator 32 slots eadlier wait for new produce an likely vote for it
up to 209% block or up to 4s attestation
Aggregotor gother attestations aggregate
approx. 16 from the current slot attestations Shate
}7 1
1 |
Os +4s +¥s

Figure 1: Timeline for the work of proposers, attesters, and aggregators.

3 The Attestation Aggregation
and Packing Problem

As covered in the previous section, one key responsibility of the proposer is
to collect attestations from the network, bundle them into a block (along with
transactions), and then share the newly minted block with the network. Because
the space in a block is limited, the proposer faces the problem of deciding which
attestations to include in their block. Moreover, because different attestations
contribute differently to the efficient operation of the blockchain, and because
some attestations have overlaps, the problem of choosing a set of attestations to



include is an optimisation problem. We call this optimisation problem the At-
testation Aggregation and Packing Problem (AAPP), and this section provides
a more formal definition for it in terms of entities, constraints, and objectives.

The creation of a block B*, where s € N232 represents the index of the
slotﬂ at which the block is proposed, is (from the perspective of an aggregator)
unequivocally associated with one and only one instance of the AAPP. For this
reason, and to simplify the notation, we will therefore treat the index s as
implicit, and drop it from the problem definition.

3.1 Entities

Let V be the set of all validators, and A be the set of all attestations available
to the proposer for inclusion in a given block B. Given an attestation a € A,
we define the following properties

e d, € D the attestation data of the a,

o V, CV aset of attesters agreeing on d,.

To keep the problem formulation general, we intentionally avoid specifying what
attestation data d, (and its domain D) looks like. Instead, we focus on what
can be done with it, e.g., compute the epoch in which it was createcﬂ

Let the set E C N2Y denote the epochsE| of the blockchain, the epoch at
which each attestation data d, € D, a € A was created?]is a function

e:D— E. (1)
Note that A is assumed to satisfy a number of properties that reflect the
context of the particular problem instance being considered. For instance, at-

testations that are too old to be included in B are excluded from A. Moreover,
it is assumed that

e(dy) =eldy) = VonNVy =0, Va,be A, (2)

in other words a validator can produce at most one attestation data per epoch.
Each individual vote produced by an attester v € V' at a given epoch e € F
carries a reward. Such a reward is a function

r:ExV —=N. (3)

This is the reward that the block proposer will collect by including the corre-
sponding vote in the produced block. Like for e(-), the way r(:,-) is computed
is irrelevant to this problem formulation.

2For convenience, we avoid considering the first 32 slots of the blockchain, as some special
handling happens at the start of a blockchain.

3In other words, we can think of each element d € D as implementing some kind of
AttestationData trait.

4For the purpose of solving the AAPP for a given block B, it is sufficient for E to include
the epoch during which the block is being created and the one immediately before, however
this doesn’t change the present problem formulation.

5While the practicalities of computing the e(d,) function for a given d, is not strictly
relevant to the problem formulation, we can count on d, carrying information about the slot
s € N232 in which that d, was created. Under this assumption, e(dy) = |5/32].



3.2 Solution
A solution S to the AAPP for the block B is a set of subsets of A. Formally

S={P|PCA. (4)

Note that, according to the Ethereum consensus protocol, a block contains
attestations, not sets of attestations. This particular formulation allows us to
consider, as candidates for inclusion in B, not only attestations in A, but also
attestations that can be produced from attestations in A by means of aggrega-
tion. In this sense, one can think of each set P € S as a set of attestations that
are meant to be aggregated before being included in the proposed B. Of course,
aggregation is subject to conditions, which we explicitly model as constraints.

3.3 Constraints

While the previous section defines the general structure of a solution S, a feasible
solution needs to satisfy some additional constraints.

Aggregation constraints. For a solution S to yield a valid block, the attes-
tations within each element of S must be compatible for aggregation. Recall
that two attestations a,b € A can only be aggregated if their aggregation data
is identical, and their sets of attesters are disjoint. More formally, the following
two properties must hold

dg, = dp VYa,be P,P € S (5)

VoV =10 Ya,be P,P € S. (6)

Because each set of attestations in a feasible S represents a valid aggregated
attestation, it is convenient to lift the properties of attestations introduced

above to sets of attestations in the natural way. Specifically, let S be a feasible
solution, and P € S be a set of attestations, we will denote by

Ve=|JVa (7)
a€EP

the set of attesters of the aggregated attestation represented by P, and by
dp (8)

the attestation data shared by each attestation a € P.

Capacity constraint. A feasible solution S must respect the following ca-
pacity constraint
IS|< N (9)

where N = 128 according to the Ethereum consensus protocol at the time of
writing. This corresponds to the maximum number of attestations that can be
included in a newly proposed block.



3.4 Objective

The quality of a solution S is a function of the sets of attestations that are
chosen to be part of it. Let

P.={Ple(dp)=e,PeS}, VeecFE (10)
be a partition (by epoch) of the solution, and let denote by
Ve, = |J Ve, VeeE. (11)
PecP,

the set of attesters covered by each set P € S. The quality of a solution can be

then defined as
R(S) = Z Z r(e,v). (12)
e€EveVp,
In other words, the quality of a solution is the sum of the rewards that can be
collected for including attestations, and considering each attester at most once
per epoch. Given this definition, the objective function of the AAPP is then

maximise R(S5). (13)

4 Existing algorithm

Currently, the Lighthouse| client developed by Sigma Prime solves the above
problem using a two-stage approach. The first stage deals with the aggregation
of attestations. The second stage deals with the packing of attestations. Both
stages rely on greedy heuristics.

4.1 Aggregation stage

The aggregation stage maintains a pool of attestations, and each time a new at-
testation is received, a greedy heuristic attempts to aggregate it with everything
else in the pool. In case of success, the attestations already in the pool will be
aggregated with the new attestation. In case of failure, the new attestation will
be added to the pool as a separate attestation.

4.2 Packing stage

The packing stage starts with an empty block and, at each iteration, greedily
includes the attestation that contributes most to the reward of the block. This
algorithm is a well-known approximation algorithm for the Maximum Covering
Problem with a bound on the number of sets to include (Maximum k-Coverage
Problem).

The approximation guarantees of this algorithm on the original problem
carry over to its application in the current context. Specifically, if the set of at-
testations to include is final, i.e., there isn’t any further aggregation beyond the
aggregation stage, the algorithm produces a packing whose value is guaranteed
to be at least ~ 0.632 of the optimal value [IJ.


https://lighthouse.sigmaprime.io/
https://en.wikipedia.org/wiki/Maximum_coverage_problem
https://en.wikipedia.org/wiki/Maximum_coverage_problem

5 Conclusions

We have introduced the context around the Attestation Aggregation and Pack-
ing Problem (AAPP) and provided a formal definition of it as an optimisation
problem. In the next report, we present a series of approaches to solve this
problem exactly.

References
[1] Dorit S Hochbaum and Anu Pathria. Analysis of the greedy approach

in problems of maximum k-coverage. Naval Research Logistics (NRL),
45(6):615-627, 1998.

10



	Background
	Decentralised trustless architecture
	Blocks and chains
	Consensus protocols
	Proof-of-Work
	Proof-of-Stake
	Incentives

	Agreeing on one history
	Longest chain
	Voting on one history


	Attestations in Ethereum
	Epochs, slots, committees
	Timeline

	The Attestation Aggregationand Packing Problem
	Entities
	Solution
	Constraints
	Objective

	Existing algorithm
	Aggregation stage
	Packing stage

	Conclusions

